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Abstract. We show that a two-leg ladder Hamiltonian introduced recently by Albeverio and Fei
can be made to satisfy the Hecke algebra. As a result we have found an equivalent representation
of the eigenspectrum in terms of the spin-1

2 antiferromagneticXXZ chain at1 = − 5
3 . The values

of thermodynamic quantities such as the ground state energy and mass gap follow from the known
XXZ results.

1. Introduction

A number of solvable models of quantum spin ladders have been found recently. In some
models certain combinations of couplings exist such that ground states can be constructed in
simple form [1]. Other models have an underlyingR-matrix and are thus amenable to the
machinery of exactly solvable lattice models in statistical mechanics. Of particular relevance
here are the two-leg Heisenberg ladders of Albeverio and Fei [2] and Wang [3]. The two
models discussed by Wang are related to knownsu(4) andsu(1|3) R-matrices, and thus to
one-dimensional chains. These symmetries are broken by the inclusion of rung interactions of
arbitrary strength which preserve the integrability. The rung interactions appear as chemical
potentials in the equivalent one-dimensional chains, with only a slight modification to their
Bethe ansatz solution. On the other hand, the model introduced by Albeverio and Fei has rung
interactions already included in the given interactions around an elementary face of the ladder.
The model has not been solved in general. Those authors found the eigenvalues in the sector
of the Hamiltonian in which one spin is flipped from the ferromagnetic ground state. Here we
address how this model relates to other known models and deduce some exact results from this
equivalence.
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The two-leg ladder model is based on the symmetric 16× 16R-matrix [2]

Ř(x) =

a1

a3 9a2 3a2 3b2

9a2 a3 3b2 3a2

a1

3a2 3b2 a5 a2

16x 4a2 4b2 2a2

4a2 a4 8a2 4b2

a5 a2 3a2 3b2

3b2 3a2 a2 a5

4b2 8a2 a4 4a2

2a2 4b2 4a2 16x
a2 a5 3b2 3a2

a1

3a2 3b2 a3 9a2

3b2 3a2 9a2 a3

a1


(1)

wherea1 = 2(−1 + 9x), a2 = −b2 = (−1 +x), a3 = 7 + 9x, a4 = 2(3 + 5x), a5 = −1 + 17x
with x arbitrary.

The matrixŘ(x) takes values inV ⊗V , whereV denotes a four-dimensional vector space.
It satisfies the Yang–Baxter equation

Ři(x)Ři+1(xy)Ři(y) = Ři+1(y)Ři(xy)Ři+1(x) (2)

where Ři denotes the matrix on the vector spaceV ⊗ V ⊗ V , whereŘi = Ř ⊗ 1 and
Ři+1 = 1⊗ Ř and1 is the identity operator onV .

We see thaťR obeys the properties

Ř(1) = 161⊗ 1

Ř(x)Ř

(
1

x

)
= −4

x
(x − 9)(9x − 1) 1⊗ 1.

(3)

The Hamiltonian can be defined as

Hladder= J
L∑
i=1

hi (4)

where the local interactions follow fromhi = 1
16Ř

′(x). We find thath has eigenvalues− 1
8

(degeneracy 3) and98 (degeneracy 13), in agreement with Albeverio and Fei. However, we
disagree with the precise form of the ladder Hamiltonian, which here reads as†

Hladder= J 1
16

L−1∑
i=1

[−3Si · Ti + 13Si+1 · Ti+1 + 3(Si · Si+1 + Ti · Ti+1)

−3(Si · Ti+1 + Ti · Si+1)− 12(Ti · Si+1)(Si · Ti+1)

+20(Si · Ti )(Si+1 · Ti+1) + 12(Si · Si+1)(Ti · Ti+1) + 57
4 1⊗ 1

]
. (5)

† The first two terms of the ladder Hamiltonian in [2] have a coefficient of 5.
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For simplicity, we have considered open boundary conditions. HereS = 1
2(σ

x, σ y, σ z) and
T = 1

2(σ
x, σ y, σ z) are the usual spin-1

2 operators, withSi andTi spin operators on theith
rung of each leg of the ladder. The ladder hasL rungs.

2. Hecke algebra

Our starting point is to note that the operatorhj obeys an algebra. Specifically, if we define

Uj = 8
3

(
hj + 1

8

)
(6)

thenUj obeys the well known Hecke algebra, which we write here as

U2
j = (q + q−1) Uj (7)

UjUj+1Uj − Uj = Uj+1UjUj+1− Uj+1 (8)

[Ui, Uj ] = 0 for |i − j | > 1 (9)

with q + q−1 = 10
3 . Thusq = 1

3 or 3.
A number of models satisfy the Hecke algebra [4]. The 4× 4 representation of interest

here is [5]

Uj =


q + q−1

q 1
1 q−1

q + q−1

. (10)

This is the co-product of the Casimir element belonging to the centre ofUq(su(2)). The
representation (10) is to be compared with the more well known representation

Uj =


0

q 1
1 q−1

0

 (11)

of the Temperley–Lieb algebra. The latter satisfies the relations (7)–(9), but withUjUj±1Uj −
Uj = 0, and is thus a Hecke quotient. The representation (10) may be written in terms of
spin-12 operators as

Uj = 1
2

(
σxj σ

x
j+1 + σyj σ

y

j+1

)
+ 1

4

(
q + q−1

)(
σ zj σ

z
j+1− 1

)
+1

4

(
q−1− q)(σ zj+1− σ zj

)
+
(
q + q−1

)
1. (12)

It follows that the Hecke Hamiltonian made up of spin-1
2 operators can be written as

HHecke=
L−1∑
j=1

Uj = 3
4

(
q + q−1

)
(L− 1) + 1

2

L−1∑
j=1

(
σxj σ

x
j+1 + σyj σ

y

j+1−1σzj σ zj+1

)
+1

4

(
q−1− q)(σ zL − σ z1) (13)

where

1 = − 1
2

(
q + q−1

)
. (14)

However, writing theXXZ term asH(1), the eigenspectrum of (13) is invariant under the
transformationH(1) = −H(−1) and the interchangeq ↔ q−1. This gives the eigenvalue
equivalence

EHecke⇔ EXXZ + 3
4

(
q + q−1

)
(L− 1) (15)
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in which theXXZ Hamiltonian is defined as

HXXZ = − 1
2

L−1∑
j=1

(
σxj σ

x
j+1 + σyj σ

y

j+1 +1σzj σ
z
j+1

)
+ 1

2p
(
σ zL − σ z1

)
(16)

with boundary fields

p = 1
2

(
q−1− q). (17)

This latter Hamiltonian is precisely that of the open antiferromagnetic spin-1
2 XXZ chain

with fields±p at the ends of the chain. Recalling thatq = 1
3, the eigenspectrum of the open

spin ladder Hamiltonian (5) is thus equivalent to that of the openXXZ chain with1 = − 5
3

and boundary fields± 2
3, after an appropriate rescaling through equation (6). In particular, for

J > 0 the Hamiltonian (5) is equivalent to the antiferromagneticXXZ chain, whilst forJ < 0
the equivalence is with the ferromagneticXXZ chain. For simplicity we takeJ = ±1.

The eigenvalue equivalence (15) assumes that the two representations of the Hecke algebra
are faithful, i.e. although the representations differ in size, they share all eigenvalues in
common. Only the multiplicity of eigenvalues differ. For a given number of rungsL, the
ladder Hamiltonian (5) is of size 16L−1×16L−1, whilst the equivalentXXZ Hamiltonian is of
size 4L−1×4L−1. We have compared the eigenspectrum of each Hamiltonian with increasingL

and believe that the representations are indeed faithful. In fact, the entire situation is somewhat
analogous to the history of the spin-1 biquadratic chain. That model [6] was mapped to the
XXZ chain via the Temperley–Lieb algebra, from which quantities such as the mass gap and
the ground state energy, etc were obtained [7]. These were seen to be in agreement with exact
inversion relation calculations on the model itself [8]. The spin-1 biquadratic chain was later
solved via the Bethe ansatz [9].

From (6) we have

Hladder= 3
8HHecke− 1

8(L− 1). (18)

On the other hand, from (15) we have the eigenvalue equivalenceEHecke⇔ EXXZ + 5
2(L− 1)

and thus

Eladder⇔ 3
8EXXZ + 13

16(L− 1). (19)

This is our key result.

3. Ground state energy and mass gap

The openXXZ chain with arbitrary boundary fields has been solved by means of the Bethe
ansatz [10]. In particular, the solution for the case12 − p2 = 1, as applies here, simplifies
considerably. We shall not reproduce the equations here, but content ourselves with recalling
the relevant results. Consider the antiferromagnetic case first. In the massive region1 < −1
it is convenient to defineq = e−θ . Here the ground state energy per site, the surface free
energy and the mass gap have all been derived [11]†. For the givenXXZ normalization, the
mass gap is

3XXZ = 2 sinhθ
∞∏
n=1

(
1− qn
1 +qn

)2

= 8
3

∞∏
n=1

(
3n − 1

3n + 1

)2

= 8
30.128 108. . . . (20)

† Of course, the expressions for the ground state energy and the mass gap are in agreement with those obtained
originally [12, 13] for periodic boundary conditions.
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It thus follows from (19) that the ladder Hamiltonian (5) has a gap3ladder = 0.128 108. . . .
More generally we expect all massive excitations in the ladder eigenspectrum to be multiples
of this elementary gap.

On the other hand, the ground state energy of the openXXZ chain scales for largeN as

EXXZ ∼ NeXXZ + fXXZ. (21)

The surface free energy contribution is given byfXXZ = g − 1
43XXZ, whereg is a known,

though complicated, expression [11]. The ground state energy per site is given by

eXXZ = 1
2 coshθ − sinhθ

(
1 + 4

∞∑
n=1

1

1 + e2nθ

)
. (22)

It follows from (19) that the ground state energy per site of the ladder is given by

eladder= 5
8 − 2

∞∑
n=1

1

1 + 9n

= 0.397 527. . . . (23)

The surface free energy relation isfladder= 3
8fXXZ − 13

16.
In the ferromagnetic regimeJ < 0 the ground state energy of the ladder corresponds to the

trivial ferromagnetic ground state14(q + q−1)(L− 1) of the openXXZ chain. It follows from
(19) that the ground state energy of the ferromagnetic ladder is given byEladder= − 9

8(L−1).
This value is in agreement with the observation of Albeverio and Fei [2].

4. Discussion

We have shown that a two-leg ladder Hamiltonian introduced recently by Albeverio and Fei [2]
can be made to satisfy the Hecke algebra forq = 1

3. As a result we have found an equivalent
representation of the eigenspectrum in terms of the spin-1

2 XXZ chain at1 = − 5
3. We

considered open boundary conditions for which the equivalent chain has surface fields± 2
3 at

the ends of the chain. The values of thermodynamic quantities such as the mass gap (20) and
ground state energy per site (23) followed from the knownXXZ results. Periodic boundary
conditions can also be considered by imposing a twist on the periodicXXZ chain, as was
done, for example, for theXXZ chain equivalent to the spin-1 biquadratic model [7].

Albeverio and Fei have noted that like the well known spin-1 Affleck–Kennedy–Lieb–
Tasaki chain [14] the two-leg ladder Hamiltonian has no free parameter. However, a free
parameter has been introduced into the AKLT model viaq-deformation [15, 16]. A form of
q-deformation should also exist for the two-leg ladder, corresponding to the variableq in the
XXZ chain, again equivalent via the Hecke algebra. However, the precise form of the two-leg
Hamiltonian would be very complicated. Nevertheless, a phase transition should exist at which
the model becomes massless at the critical valueq = 1.

Another related point is that just as Wang’s two-leg ladders can be generalized ton-leg
ladders [17], we might ask whether there is another faithful representation of Hecke, this time
of size 64L−1×64L−1, corresponding to a three-leg ladder. Again the Hamiltonian would most
likely include all possible interactions.

Although we have seen that the two-leg ladder Hamiltonian provides a representation
of the Hecke algebra, the equivalence ultimately lies with theXXZ chain, and thus with
the Temperley–Lieb algebra. We thus expect that the Hecke representation we have found
here is also a quotient of Hecke. On another tack, considering instead the Temperley–
Lieb representation (11) withq = 1

3, we observe that as is to be expected only part of
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the eigenspectrum of the two-leg ladder is recovered. Similarly, if we use Saleur’s Hecke
representation [18]

Uj =


0

q 1
1 q−1

q + q−1

 (24)

with q = 1
3 we recover part of the ladder eigenspectrum. The latter is known to be a quotient

of Hecke [19], but more importantly it is free-fermionic, being equivalent to anXX chain [18].
This gives the free-fermionic part of the ladder eigenspectrum. As a point of further interest
Saleur’s representation can also be used to give the free-fermionic part of the eigenspectrum
of theXXZ chain.

Finally, we note that although the two-leg ladder (5) includes complicated interactions
it is nevertheless a model for which exact results can be obtained. It thus provides a useful
testbed for numerical calculations on more realistic models.
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